翻訳と辞書
Words near each other
・ Isotrias huemeri
・ Isotrias hybridana
・ Isotrias joannisana
・ Isotrias martelliana
・ Isotrias penedana
・ Isotrias rectifasciana
・ Isotrias stramentana
・ Isotricha intestinalis
・ Isotrilophus
・ Isotron
・ Isotropic bands
・ Isotropic coordinates
・ Isotropic etching
・ Isotropic formulations
・ Isotropic line
Isotropic manifold
・ Isotropic quadratic form
・ Isotropic radiation
・ Isotropic radiator
・ Isotropic solid
・ Isotropis
・ Isotropy
・ Isotta Brothers
・ Isotta degli Atti
・ Isotta Fraschini
・ Isotta Fraschini Asso XI
・ Isotta Fraschini D65
・ Isotta Fraschini D80
・ Isotta Fraschini Delta
・ Isotta Fraschini T8 and T12


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Isotropic manifold : ウィキペディア英語版
Isotropic manifold

In mathematics, an isotropic manifold is a manifold in which the geometry does not depend on directions. Formally, we say that a Riemannian manifold (M,g) is isotropic if for any point p\in M and unit vectors v,w\in T_pM, there is an isometry \varphi of M with \varphi(p)=p and \varphi_\ast(v)=w. Every isotropic manifold is homogeneous, i.e. for any p,q\in M there is an isometry \varphi of M with \varphi(p)=q. This can be seen by considering a geodesic \gamma:()\to M from p to q and taking the isometry which fixes \gamma(1) and maps \gamma'(1) to -\gamma'(1).
==Examples==
The simply-connected space forms (the n-sphere, hyperbolic space, and \mathbb^n) are isotropic. It is not true in general that any constant curvature manifold is isotropic; for example, the flat torus T=\mathbb^2/\mathbb^2 is not isotropic. This can be seen by noting that any isometry of T which fixes a point p\in T must lift to an isometry of \mathbb^2 which fixes a point and preserves \mathbb^2; thus the group of isometries of T which fix p is discrete. Moreover, it can be seen that no oriented surface with constant curvature and negative Euler characteristic is isotropic.
Moreover, there are isotropic manifolds which do not have constant curvature, such as the complex projective space \mathbb^n (n>1) equipped with the Fubini-Study metric.
Further examples of isotropic manifolds are given by the rank one symmetric spaces, including the projective spaces \mathbb^n, \mathbb^n, \mathbb^n, and \mathbb^2, as well as their noncompact hyperbolic analogues.
A manifold can be homogeneous but not isotropic, such as \mathbb\times S^2 with the product metric.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Isotropic manifold」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.